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Some conjectures on Sn-derived nuclear permutational
(or NMR) spin encodings:

On existence of limiting Sn-module decompositional sets for
weak (λ ` n)-branching at high n; on Voronoi polyhedral dual as

geometric analogues to Cayley’s SU2× Sn↓G embedding
theorem; and on SU(m > 3)× Sn dual group with retention of
self-associacy over subduced irrep set, as being the sufficient

further condition to ensure the determinacy of
SU(m > 3)× Sn↓G embeddings ∗
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In the context of structures arising from nuclear permutation (NP) or NMR dual-group
spin algebras, the first conjecture sets out the high-index n, and thus weak-branching limit
(WBL), aspects of :λ: (Sn) module decompositions as giving rise to a set of numerical values
for the associated Kostka coefficients which are invariant to further incrementation in the
Sn index; the existence of such combinatorial limit properties, implicit in sstλ

′
(λ) tableaux

enumerations, has not been addressed in the mathematics literature to date. Conjectures 2
and 3 are concerned with the questions of geometric and sufficient algebraic realisations
of the determinacy of natural finite group embeddings in specific SU(m)× Sn permutation
groups. In conjecture 2, the Voronoi dual-structures to the regular polyhedra for NP/NMR
automorphic SU2 × Sn↓G embedded spin symmetries hold the key to physical insight.
Specifically, they provide a novel combinatorial geometric view of Cayley’s theorem; the
mid-face intersecting (i > 3) Ci-axes of the initial NMR automorphic solids become (vertex)
body-diagonal axes of the specific-dual Voronoi polyhedra, where a distinctness condition
from the spin-sites gives raise to a geometric statement of Cayley’s theorem. Conjecture 3
is concerned with SU(m > 3) × Sn↓G embeddings for which the simple Cayley criterion
alone is an insufficient condition to guarantee determinacy. The Sn self-associacy property
and its retention over the subduced irrep-subset(s) (i.e., comparable to studies of Sn system-
invariants via Yamanouchi–Gel’fand subduction chains) is now seen as indicative of retention
of determinacy for such SU(m > 3)×Sn↓G group embeddings through the above sufficiency
condition.

∗ Dedicated to my long-time Manchester friend Joe Lee, on the occasion of his retirement and 67th
birthday.

 J.C. Baltzer AG, Science Publishers
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1. Introduction

In recent years, it has become clear that there exists an extensive body of theory
[8–10,16,19,36] underlying physical and mathematical modellings which is associated
with Sn-encodings and which is of equal pertinence to several disciplines, and over
various interdisciplinary areas. At first sight the models might seem unrelated, how-
ever, the study of encodings reveal subtle mathematical links. Our original discussions
centred on nuclear permutational (NP), or NMR spin, algebras and on the determinacy
of the invariants associated with NMR automorphic finite groups (G, i.e., the rotational
D3, . . . ,O,P sub-groups of conventional molecular symmetries), as Sn↓G embeddings
in specific permutation groups [24,27,29]. Balasubramanian’s original assertion [2], on
role of {Jij} intra-cluster coupling hierarchy as the automorphic structure of subduced
NMR spin symmetry and its group embeddings, and our subsequent views of the nature
of Sn↓G forms [23,25,28,34], have a wider significance in modelling applications.

This research note is essentially concerned with specific conjectures first utilised
in physically-oriented NMR work; these are stated now in explicit forms to allow a
better appreciation of their value (as part of discrete mathematical studies), as well as
for their importance in wider modelling applications.

Our original interest was in modelling various NMR spin algebras associated with
some large isotopomer exocage clusters, e.g., [CH]20 or [BH]2−

12 ; for H ≡1 H (2H). It
has developed since into a study of Mλ ≡ (:λ: )(Sn) Sn-module (Young rule) decompo-
sitions over [λ′] irreps [24,27–29] of {[λ′]} set, for all λ’s preceding (�) λ ` n (math.)
partition, and subsequently has grown into a study of the form and general determi-
nacy [27,29] of automorphic NMR groups into specific SU(m)×Sn groups [24], i.e.,
beyond those SU2×Sn↓G bipartite mappings, for which Cayley’s theorem n(Sn) = |G|,
finite group cardinality is a sufficient condition to ensure determinacy of the natural
group embedding, as part of a subduction process.

From this vantage point, it was natural to investigate the specific SU(m)-
branching of the dual group SU(m) × Sn(↓G) [27,29] and certain of the regular
polyhedral invariants [23–25,28,34] associated with them. These automorphic forms
are related to the Sullivan and Siddall III work [21,22] on Casimir invariants of
SU(m > 6)× S6↓O embedded NMR spin symmetry with its λ ` (n = 6) partition.

The following conjectures arose in the course of recent discussions [27–29] and
represent our views:

(i) On the existence at high Sn index of a weak-branching limit (WBL) in decomposi-
tion processes governed by combinatorial sstλ

′
(λ) rules, i.e., the Kostka co-efficient

set {Λλλ′} (over {[λ′]} set) for high index-n SU(m > 3)×Sn group dualities, so
than all non-WBL decomposition coefficient sets are recognised as distinct subsets
of the final invariant WBL set; naturally, applications involving the Littlewood–
Richardson rule (LR) would necessarily require use of a much higher n-index for
its standard (invariant to further increment in n-index) set of mononial coefficients
to appear, than applies to the case of simple YR(III) Young rule decompositions;
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(ii) On the existence and realisation of geometric analogues of Cayley’s theorem,
n = |G|, for SU2×Sn↓G embedded spin algebras, essentially in terms of Voronoi
polyhedra (VP) as dual forms (and where the construction of VP is based on the
normals bisecting the edges of the original modelling). The exclusively combi-
natorial form of these spin algebras illuminate the relations between algebraic
formalisms and their projective geometry;

(iii) The extension via a further sufficiency condition to Cayley’s theorem to yield
general determinacy conditions for SU(m) × Sn↓G dual group embeddings, is a
more subtle question than either, the form of a Cayley’s theorem geometric ana-
logue (i), or the m� n branching determinacy of, e.g., six-fold duality problem,
set out in [21,22]. However, even here some progress is possible. We evoke a
corollory of a self-associate (internal symmetry) irrep property, initially known for
hierarchies of Yamanouchi–Gel’fand chain group encodings [20] (see section 3 be-
low), in order to shed some light on the determinacy of naturally-embedded spin
algebras at these higher λ ` n SU(m)-branching. Then our conjecture stated
that: “retention of self-associacy over the irrep set derived from a [λ]SA of the
SU(m)×Sn to be embedded constitutes the necessary further sufficiency condition
to ensure determinacy in the generalised natural embedding.”

2. Definitions of the basic notation employed herein

• λ ` n, a mathematical number partition into less than n parts, and λ′, a partition
occurring in same Sn algebra, � λ ` n, higher or equivalent in a sequence ordering,
decreasing from n.

• Sn↓G, a natural embedding of a finite group G in a specific Sn group, i.e., a single
step chain subduction process.

• :λ: (Sn), model based on a Mλ simple Sn-module, a property natural associated
with the Young permutational characters ξ:λ:.

• Λλλ′ , a reduction (or Kostka) coefficient of some form of decomposition process;
specifically under Young’s rule (third variant), these are Kostka coefficients.

• [λ], an irrep of Sn group of cardinality |[λ]| = χ[λ]
1n , the principal character.

• (8, 8, 3), common vertex index of (regular) polyhedra-identifying the set of n-
polygons incident thereon.

• [λ](2)(11), the symmetrised (antisymmetrised) identical (inner tensor) product asso-
ciated with plethysm formation.

• Ũ×P(Γ̃)(v), the projection operations inherent in mappings under the SU2×Sn dual
groups where Ũ relates to Dk(Ũ) rotation aspects of SO(3), from SO(3) vs. SU2
homomorphism, and v is generic for all remaining inner recouplings, or Sn-scalar
invariants.
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• {. . .} (complete) set of (irreps, or branchings), especially within a hierarchy. SA
labelling denotes a self-associate form (irrep) under Sn – i.e., a form invariant under
rotation of Young tableau about its NW/SE diagonal.

• Voronoi structure, a dual (generally regular) figure derived from the intersectrix of
bisectors of face-edges of the original (reg.) polyhedron.

• → a mapping onto; {/} a (complete) set;

• sstλ
′
(λ) refers to tableaux combinatorial enumeration, λ are the contents arranged

in standard semi-normal tableaux over the shape(s) λ′ as possible, for λ′ � λ of
priority sequence ordering.

• |G| or |Sn↓G|, the group cardinality (order); ∀, for all; |, for which.

• YR(III) and LR refer to the third variant of Young’s rule and the Littlewood–
Richardson rule in combinatorial algorithmic forms, respectively.

3. Brief physical overview:
Other aspects of encodings or embeddings for NMR duality

It was Balasubramanian [2] who in the early 1980s recognised that NMR spin
symmetries are automorphic forms derived from the inherent structure of the intra-
cluster {Jij}-hierarchy; then, it was seen that such automorphic symmetries for nu-
clear spin systems were implicit also in the weighting aspects of ro-vibrational spec-
tra [3,14,30,35] and that these constitute important properties of Sn>12↓G isotopomeric
exocage clusters. For this reason, the question of the highest SU(m) level for which
full determinacy is retained in the associated SU(m) × Sn↓G embedded spin alge-
bra represents a topic of much inherent interest, which is central to the weighting
spectral-intensity aspects of large exocage clusters.

That dual group algebras represent some form of encoding under λ ` n is clear
from several differing viewpoints. For instance, both the simple λ ` n partitions them-
selves, and the corresponding Sn modules, represent forms of information – encoding,
whose determinacy is related to the level of SU(m)-branching [24,28]. Hence in a
discrete mathematical sense, the SU(7) × S6 branching of [21,22] is a non-attainable
partition of n = 6. The additional null element of (λ ` 7) immediately implies a
degree of indeterminacy, without the need for explicit functional algebraic analysis.
The decomposition of Sn-modules [27–29] over bases of {[λ′]} irreps is likewise an
encoding within a SU(m)-branching hierarchy. Further aspects of encoding are evident
in the way the subsets of Yamanouchi–Gel’fand chain irreps for

Sn ⊃ Sn−1 ⊃ · · · ⊃ S3 ⊃ S2,

when derived from the [λSA] self-associate irrep(s) of the (maximal) n-index symmetric
group, retain a form of self-associacy over the resultant set, as the theoretical chain
subduction proceeds over decreasing indexed Sn−i subgroups.

Other forms of encoding occur in the {Dk(Ũ) × Γ̃[λ](v)}(SU2 × Sn) irrep set
of Liouvillian dual tensors, as seen in their v (generic) inter-group co-operability
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modes [5] and in the nature of the super-generator derived {s2
i}-bosons and their formal

ladder algebras. We discussed Ũ × P(Γ̃[λ](v)) mapping over the related H̃v carrier
subspaces in the context of the retention of SU2 × Sn simple-reducibility in earlier
work [26]. For brevity, the reader is referred to the original work for background on
these specific topics concerned with the general substructure of such dual (Liouvillian)
tensors [11,12]. Suffice it to say that such direct product aspects provided much of the
original motivation for this work.

Conjecture 1. “On the existence of a weak-branching high-n index limit (WBL) for
the reductive Kostka sets of Sn-module decompositions; the non-WBL Kostka sets
being subsets of the further n-increment invariant WBL set.” For analogous combina-
torial processes such the L/R rule, but now at much higher n-index for a WBL, similar
invariant sets with a hierarchy of intermediate branching level (varying) subsets apply,
as discussed in conjecture 2 below.

Initially, we are concerned with the mappings [19],{
:λ:→ ⊗λ, Λλ[λ′][λ

′]
}∣∣λ,λ′ ` n, (1)

for the λ-partition spanning {[n], . . . , [λ′], . . . , [λ]} basis, i.e., with λ′ � λ in the
ordering sequence. The assertion for high (increasing) index-n permutation groups re-
quires the λ ` n structures of (incremental) Sn-irreps to be considered over a common
(complete) basis for highest feasible branching n index, namely,

L≡
{

[n], [n− 1, 1], [n− 2, 2], [n− 2, 11]; [n− 3, 3], [n− 3, 21], [n− 3, 13];

[n− 4, 4], [n− 4, 31], [n− 4, 22], [n− 4, 211], [n − 4, 1111];

[n− 5, 5], . . .
}

, (2)

where the marker ‘;’ is used to denote changes in leading n−µ portion of irrep labels.
The logic of assertion (1) comes directly from the Sagan–Young algorithm for standard
tableau enumerations [19]. Lower n-indexed Sn group decompositions are necessarily
subsets, both in the sense of certain numeric Λλλ′s being less than the final limiting
value, and also in the sense that, at a lower Sn n-index, certain initial [n − µ,µ]
λ ` n branching of (2) are inaccessible, e.g., the [−, 4], [−, 31] components preceding
[222](S6), compared to sequence for higher Sn algebras.

For examples of substructure leading to the weak branching limit at high index
−n, one may take the :λ: = :n − 4, 211: 4-part form at S8,12 WBL compared to S6

subset, where the underlined numeral is an element of the non-WBL subset:

:λ: (Sn)→ {1, 3, 4, 3; 3, 4, 1; 1, 2, 1, 1}L(Sn) ∀n > 8, (3a)

:λ: (S6)→ {1, 3, 4, 3; 2, 4, 1; −,−, 1, 1}L, a subset for non-WBL, (3b)

and (unit col.) L retains full component structure for generality, as in (2) above. As
further examples, we consider modules :λ: = :6, 33: and :4, 33: both as forms of the
deeper branched form of :n− 6, 33: Sn-module, requiring investigation at high index
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using the higher Z(Sn) characters. For WBL (compared to non-WBL subset), one
finds the mappings

:n− 6, 33: (Sn>12)→ {1, 2, 3, 1; 4, 2,−; 3, 3, 1,−,−; 2, 2, 2, 0, . . . ;

1, 1, 1,−, 1}L, (4a)

:n− 6, 33: (S10)→ {1, 2, 3, 1; 4, 2,−; 3, 3, 1,−,−; 1, 2, 2, 0, . . . ;

−,−, 1,−, 1}L. (4b)

Additional checks on these decomposition are possible by evaluating the p-parts of
the LHS as a monomial and comparing that result with the sum of |[λ′]|, the principal
characters. For further details of other high n-index Sn modules and their weak
branching limits, the reader is referred to discussions and tabulations in refs. [27–29].

It is convenient to discuss the Kostka coefficients sets/subsets, since their deriva-
tion via sstλ

′
(λ) enumeration is well understood and documentated in the combinatorial

literature. Further in the less-dominant order sector of λ ` n the Young permutation
characters determine the specific Kostka subsets (now well removed from any WBL).
Finally the Kostkas associated with :1n: are defined identically by the (transposed)
χ[λ]

1n characters over {[λ]}.

4. Implicit corollory to conjecture 1 for L/R decompositions, given here in
terms of S2-plethysms [4,11,12,15,17]

The analogous (but distinctly more involved) nature of tensor products strongly
suggests that their non-SR reductive coefficients be considered in a similar generalised
complete form and, in particular, for the first high n-indexed Sn-group(s) which yields
a tractable set of results for (say) initial {λ ` n; p 6 2, 6 3} irreps of [λ] ⊗ [λ] or
[λ]⊗ [λ′] inner tensor products (ITPs) [4,11,12,15–17,19]. As an example of a general
form of calculation in the weak-branching high-n limit, we give the tensor products
in terms of the Schlaflian [λ](2;11) terms [11,12,15,17] – since their direct sum is over
sets closer to simple-reducibility than the full ITP and also allows for discrimination
between the symmetrised and antisymmetrised [λ](·) forms [4]:

[n− 2, 2] ⊗ [n− 2, 2] ≡ [n− 2, 2](2) ⊗ [n− 2, 2](11), (5)

where the respective mappings for n > 8 become

[n− 2, 2](2) ≡ {1, 1, 2,−; 1, 1,−; 1,−, 1}L,

[n− 2, 2](11) ≡ {−,−,−, 1; −, 1, 1; −, 1,−}L. (6)

The direct sum yields the high n-index WBL-equivalent result given in earlier
work [31]:

[n− 2, 2](2) ⊕ [n− 2, 2](11) → {1, 1, 2, 1; 1, 2, 1; 1, 1, 1}L(Sn) ∀n > 8. (7)
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Similarly at high n-index, one finds that the inner tensor product (ITP) [n − 3, 3] ⊗
[n− 3, 3] now becomes

[n− 3, 3](2) ⊕ [n− 3, 3](11)→ {1, 1, 2,−; 2, 1,−; 2, 1, 2, 0, 0; 1, 1, 1, 0, 1,−,−;

1,−, 1}L ⊕ {−,−,−, 1; −, 1, 1; 0, 2, 0, 1, 0;

−, 1, 1, 1,−,−,−; −, 1, 0, 0, 1}L, (8)

where the respective subspaces for S12(S20) are of 11935 and 11781 (450725 vs.
450775) orders. The full ITP mapping becomes

[n− 3, 3] ⊗ [n− 3, 3]→ {1, 1, 2, 1; 2, 2, 1; 2, 3, 2, 1, 0;

1, 2, 2, 1, 1,−; (1), (1), 1,−, 1,−}L(Sn) ∀n > 12. (9)

The discrimination in irrep distribution in (8) corresponds to the recently proposed
Carré–Leclerc domino-tableaux rule [4]; a wider discussion with dimensionality checks
on a variety of examples has been given elsewhere [31]. The earlier work of Esper and
Kerber [11,12] on generalised plethysms is especially valuable, despite its restriction
to S10-ITPs. Several recent mathematics texts [15,17] provide particularly valuable
background to symmetrisation of ITPs via plethysms and to the use of the Lyubarskii
formula (10) of ref. [31]. The latter also provided the starting point for Esper’s 1975
mathematical computations [11].

As an approach to ITP formation, it is especially useful for higher Sn groups
provided one only requires ITPs derived from bipartite forms. It is necessarily limited
in scope for WBL-equivalent limit to (say) maximal [n− 4, 4]⊗ [n− 4, 4], where this
could well require knowledge of the Z(Sn∼16) character set.

Conjecture 2. On Distinctive automorphic reg. polyhedra and their Voronoi duals:
Cayley’s theorem for specific SU2 × Sn↓G groups now as combinatorial geometry.
The form of conjecture 2 reads as follows:

“For SU2 × Sn↓G finite group embeddings in a specific n-indexed symmetric
group obeying Cayley’s criterion for n vs. |G| which correspond to some regular poly-
hedral model, there exists a Voronoi dual structure whose vertex diagonals correspond
to the Ci axes of the automorphic spin Sn↓G invariance algebra. The distinctness of
these from all spin-sites of the original reg. polyhedron ensures the spin invariance
properties are exclusively combinatorial in form.”

These propositions arise from considering the automorphic regular polyhedral
forms associated with naturally embedded spin algebras either as geometric solids or
alternatively, as their corresponding SO(2) projective tilings [8–10] in the sense of
unfolding of the 3-space figure. Both approaches lead to certain Voronoi polyhedral
(polygon zonal) constructions. The Cayley-determinable naturally-embedded SU2 spin
algebra has certain inherent Ci axes, i = 2, 3, 4, . . . , which permit the derivation of
invariance properties of the automorphic subduced spin symmetry. While these may be
shown to project from mid-face (or mid-edge) of the (automorphic) geometric figure
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Figure 1. The (outer) original (8, 8, 3) polyhedral automorphic model of S24↓O naturally embedded spin
symmetry, with its (included) dual the encapped octahedron which constitutes a Voronoi structure based
on the (o) (open and (for primary octagon) shaded) circles. The distinctness of the C3, C4 axes, which
constitutes the body-diagonals of the Voronoi structure, from the (8, 8, 3) outer exo-cage vertices provides
a geometric and combinatorial statement equivalent to n-index≡ |G| property known as Cayley’s theorem

– see conjectures 2 and 3.

– i.e., as a set of axes totally non-coincident with any pair of figure vertices, – for the
Voronoi polyhedra the C3, C4 axes now constitute the body-diagonal vertex elements of
the dual construction to the initial geometric solid. Figure 1 illustrates the points made
above, with reference to the (8, 8, 3) regular polyhedral form of SU2× S24↓O natural
embedding, as an example. As a further example, one notes that the (6, 6, 4) polyhedral
form of the same spin algebra, i.e., isomorphic in spin site invariance properties to
that of figure 1, exhibits a biprismic-related Voronoi dual, see figure 1 of refs. [6,32].

An analogous discussion of 13C60 and higher 13C60z2 fullerenes [30,35] could be
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Figure 2. The ‘unfolded’ SO(2)-like projection of (8, 8, 3) reg. polyhedra of figure 1, showing the two
distinct types of Voronoi centres (o). Note the absence of recto-linear translation of the new grid to that
derived directly from the (8, 8, 3) figure; this stresses the Voronoi construction is non-affine with respect

to the original lattice.

made which would serve to confirm the role of the set of Voronoi polyhedra, with one
body-diagonal for each distinct (i > 3) Ci symmetry operator. Only for embeddings
under the Cayley constraint can the Voronoi polyhedra body-diagonals be associated
with the (i > 3) Ci distinct axes of the spin algebra. Alternatively, on drawing Voronoi
figures [8–10,36] to the projective tiling and then inserting the Voronoi centres (o)
and zones, one finds that in terms of translation the tiling contains non-(self-)affine
substructures, figure 2. From this example, it follows that no standard-dissection exists
of the SO(2) lattice.

Since it was noted [30,35] that n = |G| automorphic symmetry polyhedra pro-
vide an exclusively combinatorial subduced invariance algebra, it is of general inter-
est that the mathematics literature suggests that Voronoi constructions indeed have a
wider combinatorial significance [1]. As a result, the form of conjecture given above
is a significantly stronger and more general statement that that given previously, in
refs. [29,30,35]; it stresses the link between algebraic combinatorics and the funde-
mental geometric aspects of the physics inherent in such modelling.

Conjecture 3. On ‘set self-associacy’ retention for determinable natural embeddings
SU(m)× Sn↓G, for specific branchings.

From Yamanouchi chain properties of the original self-associate Sn irreps, it
is well-established that progressive subsets over the chain retain an overall total self-
associacy (SA) property; table 5 of ref. [27] for [λ]SA(S12) gives some typical examples.
A further example of determinable subduction chain process retaining overall derived-
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set self-associacy may be seen on examining the first two step of the Yamanouchi–
Gel’fand process applied to [4321]SA(S10):

[4321]SA→
{

[432] + [4311] + [4221] + [3321]
}

SA

→
{

2[431] + 2[422] + 2[4211]SA

+ 2[332]SA + 2[3311] + 2[3221]
}

SA(S8). (10)

Hence, it is conjectured here for the single-step subduction that:
“For natural embeddings at some SU(m > 3) branching level, as implied by the

original Sn group irrep, the subduced symmetry subsets of the irreps derived from a
specific [λSA] must also constitute an overall SA-retaining set, {Γ(Sn↓G)}SA, in terms
now (cf. to Yamanouchi group chain) of the natural (SU(m)× Sn↓G) embedding for
determinacy to be assured.”

Conversely, departure from overall SA condition of the subduced spin algebra is
to be taken as a reason for presuming that an indeterminacy is likely present in the
embedded spin algebra at one of the higher SU(m) branching levels surveyed. At the
present time, there is no known way to obtain a direct mathematical proof for this
assertion; in part, this stems from Cayley’s theorem being explicitly concerned only
with SU2× Sn↓G natural embedded spin algebras and otherwise, from studies of the
invariants for automorphic model regular polyhedral geometric solids still being in
an early stage of development [23,24,27–29,34]. What is clear is that under certain
subduced natural embedding from specific SU(m)×Sn algebra, one may write gener-
alised algebraic forms of mapping from [λ]SA which meet the criteria given above; as
an example for SU(m)× S8↓D4 embeddings [6] from [4211]SA, [332]SA this implies
that for determinacy to be retained, the following general form must be adhered to:

[λ]SA(S8)→
{
µ(A1 +A2) + µ′(E1 + E2)

}
SA(S8↓D4). (11)

Table 1
Table of known SU(m)× Sn↓G determinacies examined under the retention of SA

properties in mapping from [λ]SA(SU(m)× Sn)→ {Γ(Sn↓G)}?SA/set.

Finite group Index of SU(m)-branching Determinacyd

specific Sn group level

D3 6a 3 Y
D4 8b 4 N

3 N
D5 10c 5 (Y)

4 N
O 24 not available –

a From S12 ⊃ (S6↓D3) ⊗ (S6↓D3) discourse in ref. [29]; b see [6]; c as reported in
ref. [33]; d Y (N) = yes (no).
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Whilst the range of enumerated correlative mapping of the form {[λ]SA →
Γ(Sn↓G)} has been fairly modest [25,28–30,33,35], the enumerative results found
to date all support the validity of this conjecture. Table 1 presents various examples
of G-embedding in specific higher dual groups, taken from recent work cited above.

5. Concluding remarks

The above remarks on Sn-module decompositions and their Kostka reduction
coefficients serve to summarise much of the tabulated material given in a recent re-
view [28]. In presenting a brief overview of the significance of Voronoi constructions
for SU2 × Sn↓G Cayley theorem-consistent embeddings as dual to the automorphic
group geometry, we have set out interesting physical example of the general mathe-
matical contention [1], which demonstrate that Voronoi polyhedra (zones) have a com-
binatorial significance. Hence, the invariance algebras of all known Cayley-consistent
SU2×Sn↓G embeddings are seen as exclusively combinatorial in nature, as befits our
geometric interpretation. Specifically, the automorphic Ci axes intersect the original
geometric solid at mid-face or mid-edge centres and are wholly distinct from all spin
sites. By contrast, as elements of the Voronoi dual forms the (i > 3) Ci axes now
constitute the vertix body-diagonal axes.

The importance of Voronoi polyhedra (zones) in co-ordination solvation and other
physical modelling applications has been noted elsewhere [7,13,18].

Conjecture 3 on the value of studying self-associacy propagation for mapping onto
an embedded group symmetry, here restricted to automorphic NMR symmetries, such as
O, P, D3−5 (as distinct from groups containing inversion-reflection operations) reduces
to being a necessary further sufficiency condition for the occurrence of determinable
correlative mappings and a distinctly interdisciplinary aspects of cluster physics.
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